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SUMMARY

The moisture absorption kinetics for Kevlar 49 epoxy have

been measured for four environmental conditions. The strength

S

degradation for the composite has been systematically measured by
- six experiments for each of the four states. The tensor polynomial
strength coefficients are generalized to represent the strength

degradation for the mocisture absorbed states.

LT B

Due to the big difference between tensile and compressive

- strength for Kevlar 43 composites, analytical representation of the

oo G et L L i 1

- failure surface requires a third-crder tensor polynomial. Four additional

biaxial experiments are nzeded to provide the necessary data. The

T

degree of fiber-controlled strength degradation is different from the 1
aegradation of matrix-controlled strength, which causes the failure

. surface to shift and deform. This shift should also be characterized

- by a thira-order tensor polynomial. !
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INTRODUCTION

Strength degradation of composites in the presence of a particular

environment is an important parameter in the design and utilization of

composites. For polymeric matrix composites, moisture environzent is

el L

known to cause severe strength degradation (1,2). For Aramid fiber

composites, the severity of the strength degradation is further

3
H
H
'
3
i

conpounde: by the fiber's affinity for moisture as well (3). It is

o B L S

. thus pertinent to 2ssess the corbined effect of the dual noisture

- absorption of the fiber and matrix.

Al LI T L.
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Since moisture transport into z composite is a kimetic process

Ao

and swelling stress induces time-dependent strength alteration, a

o -y

complete characterization of the resuitant strength degradation

. requires a hereditary integration of the stress history and the

coisture absorption/desorption history. 1In principle, this procedure

[P TE .Y

is akin to the hereditary integral in viscoelasticity. In this
particular context, we need to develop a general strength degradation

function of stress, mcisture, and time. As an initial step, we treat

the special case in wnaich stress and moisture are taken to be separable

in time, i.e. the composite is exposed to moisture in the absence of
applied stress (but possivly in the presence of fabrication-induced

tress) and the moisture content is postulated to be a state varizble

affecting the strength.
. The Aramid fiber composite characteri:zed herein is Kevlar 49
filament wound with a XD7818/Jeffamine T403 epory. This composite

is fabricated into plate and tubte forms by a filament winding prccess




(at AMMRC), exposed to three moisture-temperature environment
conditions and, upon reaching equilibriuia, mechanically tested in six

states of loadings to assess the failure envelope as a function of

moisture absorption conte.t.

MOTISTURE EXPOSURE PROCEDURE

The sample nsterials consisted of fila:ent-wound plates and tubes.

Details of the fabtrication procedure are described in Appendix I.

oAb LU AL ALY,

Upon receipt, the samples were kept in a desiccated oven at 50°C for

72 hours at atmospheric pressure and subsequently stored in sealed bags

with silica gel desiccant. This is the controlled initial dry state

AN ottt L

(0% moisture). The sample materials were divided into four groups,

i

one control and three groups to be treated under the following conditioms:

Ll AR

1. 52% Relative Humidity at 23°C

e

2. Liquid water at 23°C

3. Liquid water at 186G°C {water b50il)

—

The first condition is maintained Dy a sealed chamber with a saturated
solution of scdium dichromate. The second condition is by imzersiom in
distilled water at 23°C, and 2e third condition is by izmersion in
liquid boiling distilled water. Moisture absorption is calculated bty
weighing the samples at appropriate time-intervals. The results of the
water absorption under these conditions are presented in Figures 1 and 2
using /{time) to observe the initial Fickian diffusior. Also represented

are uncoated Kevlar 49 fibers subjected to comparable conditions (but in
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a different apparatus due tc the different weight measurement resolution

requirements*). The results are swmmarized in Table 1.

Table 1

Equilibrium Moisture Content % Above Baseline

52% RH/23°C Liquid H20/23°C Liquid H20/100°C
Kevlar-49 fiber 3.2 6.0 6.1
Kevlar-49/ XD-T403 4.1 7.8 8.9
Epoxy XD-7403* (0.3-5.7) (5.6-11.0) (8.5-13.9)

*By difference of fiber and composite moisture content using rule of
mixtures with Vg = 58.1%, Density of fiber-1.45 gm/cc, Density of matrix-
1.189 gm/cc; void volume fraction is 2.5% (ASTM D2734).

We note from Figures 1 and 2 that because the rate of moisture uptake for :
the fiber is much faster than that for the epoxy, the moisture absorption
rate for the composite is primarily governed by the epoxy-water absorption
rate. Secondly, from Table 1 we note that a significant ﬁerceniage of

the moisture is absorbed in the fibexr which leads to a degradation of

fiber-controlled strengths; this degradation of composite strength in

the fiber direction is normally very small for graphite fiber composites

brt is significant for Kevlar composites. Thirdly, the calculated upper bound

oisture contents for the epoxy are higher than those reported for neat

——

*The nominal weight of the composite samples is 15 grams. The weight of
these samples is measured on a balance with a weight resolution of 0.0l
gram. The nominal weight of the fiber samples is 0.2 grams. The weight

of these sampies is measured in a balance with weight resolution of 0.001
gram.

-5~
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epoxies. This suggests that free water may have accumulated in the

voids of the composite, hence the range of possible resin moisture
cotrcents shown in Table 1.
The samples were exposed until equilibrium was reached. They

were then mechanically tested to evaluate the strength degradation

due to the exposure Listory and the moisture content.

STRENGTH MEASUREMENTS

The objective of the mechanical testing is to assess the effect
of absorbed moisture on the strength of the composite under muitiaxial

loading conditions as normally experienced by the composite in

structural applications. In a structure under service loading conditions,

different locations of the structure experience various combined-stress

ratios. These combined-stress ratios can be graphically represented as

rays as depicted schematically (in 2-dimensions-rays a, b, ¢, etc.) in

Figure 3a. The limiting load carried under each of these combined

loading conditions determines a point at the end of each ray; the
envelope formed by these points defines a failure envelope. Thus, when
the failure envelope for a2 material is known, we can estimate the

integrity of a structure under general service loading. The determination

of such a failure surface for a Kevlar composite is the objective of this

investigation.

The failure envelope for a composite may be obtained through

exhaustive <‘esting by varying the combined loading ratios until the

entire surface has been mapped out. The experimental effort for such

an approach may be estimated. Assume that we vary the loading conditions

such that each ray is spaced 30° apart, then to map out a two-dimensional

surface requires 360/30 or 12 different tests. However, even for a

-6-
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Fig. 3a Two-dimensional schematic of rays representing combined

loading ratios texminating to form a faiture surface.

Fig. 3b Schematic of a failure surface.
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planar two-dimensional composite, there exist three components of

stress; longitudinal, transverse and shear stress. Thus, a three-

dirensional surface is needed. If we subdivide such three-dimensional
B surfaces into 6 planes, then a total of 6 x 12 or 72 tests are

4 required. If each combined loading test is repeated in five replicas,

e ' then the total mumber of measurments is 360. This number has to be
37 multiplied by the different environmental conditions, thus makirg the
§§ task quite substantial.
2

As an alternative to exhaustive testing and to experimentally
rrace out a failure surface, we chose to leave the form of the failure

criteria general and perform the necessary guiding experiments to

= define the failure surface. A summary cf the current failure criteria
> and the critical guiding experiments have been presented by Wu (4).

- The same characterization procedures are used herein. Briefly, a
failure criterion is 2 mathematical representation of a fallure surface
of a composite in a given state, i.e. a2t a given temperature, loading
rate . envirommental history, etc. In such a state f(ci,el), the failure
surface is illustrated in Figure 3b where Gl is a generalized variable
defining the state, e.g. the moisture content. At another state

f(ci,ez), the failure surface (such as after moisture exposure) can

be in general different in size and in shape than the former state.

The objective here is to define the shape of the surface with a minimum
nunber of experiments. The experimental strategy may be visualized by
considering the most expedient way to establish the function of two
variables; i.e., a curve in a two-parameter space. We may initially

assume the curve to be a straight line; this requires two tests performed

-8-
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respectively at the axis-crossing of the two parameters. We may then

interrogate whether the curve is second-order, say, a parabola. This

requires one additional test at a combined ratio of the two parameters.

The result of this third test either confirms or disputes the former

assumption that it is a straight line. Further combined tests may be
used to interrogate whether the curve is 3rd, 4th or higher order.

In other words we are sequentially determining the coefficients of a

polynomial until the curve is adequately represented.

Similarly for a three-dimensional failure surfice, geometrically
(Figure 3b) it is self obvious that we need to determine the axis
crossings of the surface. For a planar composite, there exist three
stress components, and if the composite strength is symmettical to
shear stress, theu there are five independent axis crossings. There
can be infinite possibilities of different failure surfaces which
possess the same axis crossings; thus, we need a minimum of one
additional experiment to define (more uniquely) the shape. These
six guiding experiments for determining the failure criterion of_a
composite are illustrated in Figure 4. The formalism of arriving at
these guid‘ng-experiments can be thought of by representing the failure

surface as a tensor polynomial and sequentially determiring the

coefficients of the polynomial:

- hY
Fioi + Fijcioj + ... = (13

[

The details of the derivation as well as experimental design and testing

methods are all reviewed in Reference (4). We will use these procedures

-9-
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without further elaboration. Bkriefly, all tencion tests (tests 'a!'

and 'c') were performed using flat coupons of the conventional 'IITRI'
configuration. A picture of the 'IITRI' sample coupon is shown in

Figure 5; the detailed dimensions of the samples are sgecified by

ASTM Standard D 3039. Longitudinal compression (test 'b') was performed
in a "Celanese" fixture. The "Celanese'" fixture transmits compressive
force through tabs (to prevent end buckling and brooming) utilizing
conical wedges which are guided in a precision cylindrical shell. A
picture of such a fixture is shown in Figure 6. Transverse compression
(test 'd') was performed on a one-inch (ID), 2-inch long, 0.05-inch thick,
hoop-wound tube; the same hoop-wound tube was also used for the shear
test. The biaxial test ('f') induced an axial for-ze and internal
pressure as described in reference (5). For the series of tube tests
using hoop-wound tubes, considerable processing development was required.
Originally, the hoop-wound angle deviated from 90° by +10° as a result
of winding passes from left and right. This winding pattern gave rise
to excessively high shear strengths. This was subsequently modified

by using inding pattern wherein the hoop-wound angle still deviated .
from 90° by only +5° as a result of passing from only one direction.

The detaiis of this process are described in Appendix I. The data
reported herein were obtained from samples using this final winding
pattern. A total of 37 tubular samples was utili:ed in the test
development of the shear and biaxial tests. Finally, the purpose of

the biaxial test (test 'f') is to identify the existence of strength

coupling under normal stresses. That is, when both longitudinal and

-11-
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. Figure 5. 'IITRI' tensile coupon.
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transverse normal stresses are applied simultaneously, strength
coupling would be maniiested by a change of biaxial longitudinal
strength from the correspending uniaxial longitudinal strength. In the
limiting case, if the biaxial strengths are the same as the umiaxial
strength, then the composite strength can be characterized by a
non-interacting failure criterion such as the maximum stress failure
criterion. Along these lines, we may think of the biaxial test as

a test to identify strength ccupling deviation from the maximum stress
failure criterion. 1In order to definitively %easure the existence of
such deviations experimentally, the biaxial ratio (B in Figure 4f)
must be chosen such that the measured deviation (if any) is statistically
significant over the usual material scatter. The importance of using

ar. optimal biaxial ratio 8 is illustrated in Figure 7(a) where the

maximum stress failure criterion and a second-order polynomial failure
criterion a2re illustrated. An optimal bisxial ratio is along the

radial directicn where the difference between the two failure criterion

is maximum. The derivation of methods to calculate this optimal

biaxial ratio is presented in Reference (5). A simplified (but approximate)
estimation of the biaxial ratio can be observed by representing the
failure criteria in normalized form in Figure 7b. In the normalized
fajlure surfaces, the maximum stress criterion is a square and the
second-order tensor polynomial with F12 = 0 is a circle. We can easily
observe that the largest differences occur at the corners or equivalently
at B8 = XI/X'Z' The degree of such an approx‘mation deteriorates when

F12 # 0. Using this approximation for the worse case, (liquid at 100°C)
8
8

n

-S; whereas by rigorous calculation (Reference 5) B = -10. We used

~-1C in our biaxial tests.
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The test resulis of the six guiding experiments are shown
respectively in Tables 2 to 5 and in Figures 8 to 13. On the left

of each figure are the stress-strain responses and on the right are

the corresponding ultimate strengths for the different moisture

exposure conditions.

REPRESENTATION OF THE MOISTURE-DEGRADED FATLURE SURFACE

Representatic. of the failure surface in terms of a tensor
polynomial for a failure surface at a given physical state has two

operational conveniences. The first is the possibility of a systematic

experimental measurement which we have undertaken in this investigation.

The second is a clear identification of material coefficients. Wren

gl b o e R

failure strength is represented in terms of stress, it is physically
inconsistent, since stress is in fact the input or the independent

variable. In the tensor rolynomial representation, the strength

tensors Fi’ Fij have the units of [S:ress]'1 and [Stress]'2 and have
the same constitutive consistency as moduli to strain. We can _
therefore characterize the moisture-degraded state in terms of the
strength tensors Fi, Fij' That is if Fi(e), Fij(e) are known, where 6
is a variable characterizing the moisture absorption, then the failure
surface at those states is uniquely determined by Equation (1). In

this problea we define 9 as:

8

Equilibrium Moisture Content - Mm (ranriz mcisture)

(2)
e

M_ (T,0)
-l
where T is the temperature and C is the moisture concentration.

-16-
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To obtain PI(G), Fij(e), we need to determine:

1 1
F.(©) = T oxrs
i Xi(GD Xi\G)

R

v M

(3)

N
Fi5(0) = X.(®) X.(®)

where Xi and Xi refer to the positive and negative strength values

measured for condition © if the failure surface can be represented

as a 2nd-order surface, i.e. an ellipsoid. To examine the latter point,
we presented the strength measurements in the stress space in Figures
14 and 15. In Figures 14 and 15, a second-order polynomial (the ellipse)

is fitted to the axis crossings. In addition, the maximum stress

criterion (the rectangle) is also represented for comparison. Cursory
inspection of Figure 14 reveals that ctne maximum stress criterion is
a poor representation of the biaxial loading condition. On the other

hand, a second-order polynomial does not sufficiently provide a

reasonable representation. The reason for this is that there are

T WL . St

drastic differences between tensile and compressive strengths for
Kevlar-49 composites. Such large strength differences displace the
center of the ellipse far away from the origin, giving rise.to the
unreasonable prediction that both in the first and fourth stress
quadrants (Figure 14), biaxial loading increases the uniaxial strengths.
In order tc eliminate such cbjections, a failure criterion containing

terms higher than second-order is required. The methodology for evaluating

gl

third-order terms for the tensor polynomial has been discussed in Ref. 4.
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The experimental evaluation of the higher order terms involves
additiona! measurements which are beyond the scope of this investigation.
Another consequence of the large differences between tensile and
compressive strengths is that it is diffi:ult to assess the effect of
environment from the failure strength in stress space (Figures 14 and 15).
This difficulty can be overcome by examining the effect of water and
temperature in the normalized strength space where the controlled dry
state at room temperature is used as the reference state. Such a
representation is given in Figure 16. An ellipse with F12 = G would
appear as a circle in the normalized space. We rote from Figure 16
that the effect of moisture and temperature on the longitudinal tensile

property is small compared to that on the compressive and transverse

properties. As a consequence of such differences in degree of degradatioun,

the center of the failure surface is shifted, accoapanied by a general
distortion. Analytical representation of such changes clearly requires
Srd-order terms. Since adequate experimental results are not availatle
for calczlation of the 5rd-order terms, calculation of the 2nd-order ternms

in Fi’ Fij can only serve to produce misleading conclusions. Four

additional biaxial experiments to measure FIIZ‘ 9221, F166 and F266 are

recor=ended.

CONCLUSION

The moisture abscrption kinetics for Kevlar 49 epoxy have been
measured for four environmental conditions. The strength degradation
for the composite has been systematically measured by six experiments

for each of the four states. The tensor polynomial strength coefficients

-30-
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are generalized to represent the strength degradation for the moisture-

absorbed states,
Due to the big difference between tensile and compressive strengths

for Kevlar 49 composites, analytical representation of the failure

surface requires a third-order tensor polynomial. Four additional

biaxial experiments are needed to provide the necessary data. Different

fra—
e

L:
AR

degrees of strength degradation in the fiber-cont-olled vs. matrix-

"

controlled strength causes the failure surface to shift and deform.

L)

gl g ity B N mummwm;&mmmmwmmmwmmm

This should also be characterized by a third-order tensor polynomial.
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APPENDIX

Specimen Fabrication

A summary of specimen fabrication precedures is presented here.

Samples for testing were provided by the sponsor, the U. S. Army

Materials and Mechanics Research Center. Specimen geometries were of

two major types: cylindrical tubes and flat plates. The maiority of the

tubes faoricated were nominally 1" I.D. specimens of approximately

0.05" wall thickness, with a nominal 90° wrap angle. All samples were

wet wound on an En-Tech Model 830 filament winder using Kevlar type 969

roving (4560 denier) with the XD7818/Jeffamine T403 epoxy system. The

specimens were wound in one direction only; that is, the winder feed

transversed the sample in one direction, halted, returned to its initial

winding location, and winding was continued. This method was employed

instead of a "back and forth" winding pattern in order to eliminate

fiber crossover points in alternate layers. A total of four layers of

Kevlar was employed. The nominal 90° samples were actually wound at

87.7° to the axis of the tubes due to the requirements and limitations

of the filament winding process. Winding tension employed was 1400 grams.

=
=3
E
=1
%
i
=3
=2
=2
23
2%
=

In addition to the 90° specimens, other tubes including a quantity of

{
(

+ 10° specimens were prepared in order to approximate axially-reinforced

cylinders. Winding tension in this case was 1600 grams.

Unidirectional flat-plate specimens of the same material were

=
B
=5

prepared using the En-Tech winder. In this case, a "flat" mandrell 26"

in length was employed and four 8" x 8'" specimen plates were made

simultaneously, two plates being produced on each side of the mandrel by

~34-
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spacing winding zones along the mandrel's length. Plate thickness was
nominally 0.06'. All samples were B-staged on the mandrels using IR
heating and then post-cured in an oven for 2 hours at 100°C. Surface
appearance of the completed samples was typical of as-wound Kevlar/epoxy,
i.e., Kevlar fibrillation at the specimen surface when covered by epoxy
yielded a rather grainy surface texture. Details of the resin chemistry

can e found in Reference (6).

i
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